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Routes to complete synchronization via phase synchronization
in coupled nonidentical chaotic oscillators
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We study the transition route to complete synchronization through phase synchonization in generic coupled
nonidentical chaotic oscillators. Through numerical studies,two routes are found, i.e., one, via lag synchroni-
zation, the other, via the intermittent chaotic burst state without lag synchronization. We claim that these two
routes are universal. As evidence, we analyze several examples on the basis ofthe conventional theory of
intermittencyin the presence of noise.
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Synchronization phenomena in chaotic systems have
tracted much attention since the work of Pecora and Ca
@1#. Recently, various types of chaos synchronization h
been studied theoretically and observed experimentally
many different disciplines of science, e.g., laser systems@2#,
electronic circuits@3#, chemical and biological systems@4#,
and secure communications@5#. Among the types of chao
synchronization,phase synchronization~PS! has become one
of the most active fields of research since the first repor
Rosenblumet al. @6#.

The study of Rosenblumet al. focused on the PS of non
identical chaotic oscillators and observed that the oscilla
show a phase coherent rotation, i.e., the phase angle o
rotation increases steadily accompanied by chaotic fluc
tions as time goes on. As the coupling strength is increa
a transition from a nonsynchronous state to a phase sync
nous state occurs through an intermittently phase-loc
state, where the phase difference between the two cha
oscillators increases~or decreases! persistently with an inter-
mittent sequence of 2p phase jumps@6–8#. They succes-
sively found that a relationship is established between
chaotic amplitudes of the oscillators as the coupling stren
increases further. As a result, the states of two interac
systems coincide, if one is shifted in time. This new synch
nous state is referred to aslag synchronization~LS! @9,10#.
With a further increase of the coupling, the lag time d
creases and the system asymptotically goes tocomplete syn-
chronization~CS! @11#. These findings led Rosenblumet al.
to propose the route from a nonsynchronous state to the
state through successive transitions of PS and LS in
mutually coupled chaotic oscillators.

The motivation of our study is to address the followin
question:Is the scenario of transitions to CS, via PS and L
a universal route in the case of coupled chaotic oscillato
with a parameter mismatch?Through statistical analysis, in
this paper, we present counterexamples to Rosenblumet al.’s
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route, and so show that a certain class of coupled nonide
cal chaotic oscillators~chaotic oscillators with a slight pa
rameter mismatch! follow a different transition route to CS
We will show that these two routes can be considered
universal on the basis of the conventional theory of interm
tency in the presence of noise@12#.

For the first example, we study coupled hyperchao
Rössler oscillators~CHRO! whose equations are written as

ẋ1,252V1,2y1,22z1,21e~x2,12x1,2!,

ẏ1,25V1,2x1,210.25y1,21w1,2,

ż1,253.01x1,2z1,2,

ẇ1,2520.5z1,210.05w1,21e~w2,12w1,2!, ~1!

where two variablesx andw are mutually coupled@13#. Here
V1,251.06DV/2 are the overall frequencies of chaotic o
cillators which are slightly detuned byDV50.001, ande is
the coupling strength. Sincey1,2 variables oscillate chaoti
cally around a fixed centery050, the phase can be define
around the center of the rotation (v050,y050) by trans-
forming v1,2[ ẏ1,2/V1,2 and y1,2 into polar variables, i.e.,
A1,25(v1,2

2 1y1,2
2 )1/2 and u1,25tan21(y1,2/v1,2) @14,15#. The

phase equations of the system are expressed as follows

u̇1,25V1,22eS x2,12x1,2

A1,2
1

w2,12w1,2

A1,2V1,2
D sinu1,2

1S z1,2

A1,2
2

cosu1,2

4
1

0.5z1,210.05w1,2

A1,2V1,2
D sinu1,2. ~2!

Then, the phase difference between the two oscillator
given byf5u12u2.

We numerically study the dynamics of the phase diff
encef as the coupling strengthe is varied. Figure 1 shows
typical dynamic behaviors of the phase differencef of the
CHRO. Fore50.13, the system shows62p phase jumps
with the intermittent chaotic bursts while their phases
©2002 The American Physical Society05-1
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locked. As we increase the coupling strength toe50.18,
there are no phase jumps to be seen, although intermi
bursts still persist. Those bursts rarely appear when the
pling strength is further increased up toe50.25. The most
notable difference in transition to CS between the CHRO
coupled Ro¨ssler oscillators is thatno phase shift is observe
when the phase of the CHRO is synchronized~Fig. 1!. This
implies there is no chance for LS to occur in case of
CHRO. On the other hand, in the case of coupled Ro¨ssler
oscillators,p/2 phase shift is observed@6#. Other notable
differences of the CHRO compared with coupled Ro¨ssler
oscillators are as follows:~i! The phase jumps occur in bot
directions@Fig. 1~a!#. ~ii ! Near the transition threshold, larg
chaotic bursts are observed, instead of the LS state@Fig.
1~b!#.

In order to understand these differences analytically,
need to study the phase difference dynamics more clos
From Eq.~2!, the dynamic equation of the phase differen
f5u12u2 can be written as

df

dt
5DV1asinf1bsin

f

2
1g, ~3!

where

a520.25cos~u11u2!,

b5
2

A1
cosS u11u2

2 D Fz11
0.5z110.05w1

V1

1eS x12x21
w12w2

V1
D G ,

FIG. 1. Time series of the phase differencef ~measured in units
of p) that show~a! intermittent 62p phase jumps,~b! PS state
with chaotic intermittent bursts near the threshold of PS to CS,
~c! a state near CS.
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g5FeS x12x2

A1
1

w12w2

A1 V1
2

x22x1

A2
2

w22w1

A2 V2
D1

z1

A1
2

z2

A2

1
0.5z110.05w1

A1 V1
2

0.5z210.05w2

A2 V2
Gsinu2 .

It is well known that there are two different time scales inf
dynamics, i.e., the fast one 2p/V1,2, which is related with
the frequency of each individual oscillator in Eq.~2!, and the
slow one 2p/DV, which is the characteristic time scale off
dynamics originating from the parameter mismatch.

In our previous study@16,17#, it was shown that if the
term g in Eq. ~3! is absent, the time evolution off stops at
f* '0 which is the stable fixed point. If we expand th
equation aroundf* , Eq. ~3! becomesdf/dt5DV1Af
2Bf31g whereA5(a1b/2) andB51/3(a1b/8). As the
trajectory off nears the tangent point,f varies very slowly
~it can be regarded as constant! in comparison withu1,2 and
g, which are fast varying terms. Therefore the above eq
tion can be converted into a difference equation between
sectioning timet, which is the average time for one revolu
tion of one of the oscillators, in the following procedure.

df5tDV1fE
nt

(n11)t

A dt2f3E
nt

(n11)t

B dt

1E
nt

(n11)t

g dt. ~4!

If we let df'fn112fn , then the equation can be dis
cretized as

fn115anfn2bnfn
31jn , ~5!

where an511*nt
(n11)tA dt, bn5*nt

(n11)tB dt, and jn

5*nt
(n11)tg dt1tDV. Notice that Eq.~5! is the equation of

the local Poincare´ map of Type-II intermittency@18# under
the influence of noise if the fast dynamics off, i.e.,jn , can
be regarded as an external noise. Equation~5! effectively
becomesfn11'anfn1jn near the transition since the valu
of fn is very small most of the time except during the bur
@Fig. 1~b!#. Then, the equation takes the form of on-off i
termittency @19# in the presence of noise. That is, Eq.~5!
predicts that thef dynamics of the system transits to C
through on-off intermittency without LS. To study the tra
sitional behavior more closely, we obtain the phase portr
of y1(t) versusy2(t), as shown in Figs. 2~a!, 2~b!, and 2~c!,
where f exhibits phase jumps, intermittent bursts, a
alomst CS, respectively.

Typically, we investigate the probability distribution o
the average time interval between two consecutive burst
f(t), i.e., the average length of the laminar states since
well known that on-off intermittency is usually observed b
fore CS. Figure 2~f! shows the23/2 slope for the shorte
range of off-state and exponential drops for the longer ra
laminar phases. In between is the shoulder that conn
these two curves. This is the hallmark of on-off intermitten
in the presence of noise@20–23#. Therefore the nature of the
intermittent bursts is indeed on-off intermittency. This,
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turn, justifies our conjecture thatthe jn term, which comes
from the fast dynamics of thef, can be regarded as externa
noise. So the observation of on-off intermittency suppo
our point of veiw that the phase dynamics of the CHRO c
be treated asType-II intermittency in the presence of nois.

For the second example, we study coupled Lorenz os
lators with a slight parameter mismatch in order to show
universal character of our observation. Coupled Lorenz
cillators are represented by the following equations:

ẋ1,25a~y1,22x1,2!1e~x2,12x1,2!,

ẏ1,25b1,2x1,22y1,22x1,2z1,2,

ż1,25g z1,21x1,2y1,2, ~6!

wherea510.0, b1,2528.060.001,g58/3, and the strength
of the coupling is given by the parametere. The phase is
well defined for (z,ż) in our parameter regime. Then, th

FIG. 2. The projection of the attractor of the CHRO in the pla
„y1(t),y2(t)… for ~a! e50.05 ~nonsynchronized state!, ~b! e50.18
~PS state! and ~c! e50.25 ~almost CS state!. Notice that large ex-
cursions from the diagonal line are observed for a nonsynchron
state. As the coupling strength increases, the points of (y1 ,y2) coa-
lesces to the diagonal line statistically.~d! Phase difference of the
CHRO in the PS regimee50.18. ~e! The local Poincare´ map that
statistically follows a cubic curve and fuzzy line near center sh
attractor bubbling.~f! Probability distribution of the average lam
nar states shows the typical characteristic scaling exponent23/2
and the shoulder.
01520
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phase difference equation can be expressed similarly to
of the CHRO@Eq. ~3!#. Figure 3 shows the results that a
very similar to those of the CHRO. In particular, notice th
the phase difference is zero when two Lorenz oscillators
nearly in the PS state@Fig. 3~a!#. This means there is no LS
state in the course of the transition to CS. These indicate
the behaviors that were observed in the CHRO can b
generic characteristic of chaos synchronization for a cer
class of chaotic oscillators.

In the case of coupled Ro¨ssler oscillators@17,24#, the
phase difference equation, if it is expanded near the
phase shift, is of the formfn115anfn1bnfn

21e1jn ,

FIG. 4. ~a! Phase difference of Ro¨ssler oscillators in LS regime
e50.13, with lag timet50.32. ~b! The local Poincare´ map that
statistically follows a quadratic curve.~c! Attractor bubbling in the
variables x1(t),x2(t1t). ~d! Probability distribution of average
laminar states shows the typical characteristic scaling expo
23/2 of on-off intermittency with noise.

ed

FIG. 3. ~a! Phase difference of coupled Lorenz oscillators in
regimee54.5. ~b! The local Poincare´ map shows a cubic curve~it
is well fitted byy50.478x12.001x3) and the almost vertical line in
the center due to attractor bubbling.~c! Attractor bubbling in the
variable z1 ,z2. ~d! Probability distribution of average lamina
lengths shows the typical characteristic scaling exponent23/2 of
on-off intermittency.
5-3
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where e and jn are the channel width and the noise te
from the fast dynamics of the system, respectively. Not
that the equation can be interpreted as the local Poincare´ map
of Type-I intermittency with noise. On-off intermittency als
can be expected to occur by the same argument as is g
previously. So, we investigate coupled Ro¨ssler oscillators at
the onset of the LS transition. In this case, the phase dif
ence of the two oscillators is locked at the lag phase~near
p/2). This phase difference is maintained until the amp
tudes are locked with a constant time delay, i.e., the LS st
The results are shown in Fig. 4. If we compensate the la
phase, the phase difference also shows large bursts nea
transition threshold just like the case of the CHRO@Fig.
4~a!#. As expected, the distribution of the average lamin
states shows the characteristic behavior of on-off interm
tency with noise@Fig. 4~d!#. Based on this observation, w
may classify chaotic oscillators into twouniversality classes
according to their transitional behavior to approach CS. T
claim is reasonable for the following argument. Since
phase difference dynamics of generic nonidentical coup
oscillators can be divided into fast and slow motions,
quadratic ~type-I intermittency @16,17#! and the cubic
~type-II or III intermittencies@18,25#! structures in the loca
ev

ev

le
iz
n
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Poincare´ map are the onlystructurally stablemanifolds un-
der the influence of external perturbations if we regard
fast motion as external noises. This is based on the w
known singularity theory@26#.

In conclusion, we have shown an alternative route to
through PS. This route, and the one proposed by Rosenb
et al., may constitute two universal transition routes to C
through PS, in coupled chaotic oscillators with a parame
mismatch. The major difference of this proposed route is
absence of the LS state. Instead, only large intermittt
bursts are observed. Analytical study based on the conv
tional intermittency theory explains well the statistical b
havior of these chaotic bursts, which demonstratedon-off
intermittency. This observation supports our claim of th
transition from PS to CS without LS.
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