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We study the transition route to complete synchronization through phase synchonization in generic coupled
nonidentical chaotic oscillators. Through numerical studies,routes are found, i.e., one, via lag synchroni-
zation, the other, via the intermittent chaotic burst state without lag synchronization. We claim that these two
routes are universal. As evidence, we analyze several examples on the b#wmscohventional theory of
intermittencyin the presence of noise.
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Synchronization phenomena in chaotic systems have ateute, and so show that a certain class of coupled nonidenti-
tracted much attention since the work of Pecora and Carroltal chaotic oscillatorgchaotic oscillators with a slight pa-
[1]. Recently, various types of chaos synchronization haveameter mismatohfollow a different transition route to CS.
been studied theoretically and observed experimentally ive will show that these two routes can be considered as
many different disciplines of science, e.g., laser systgths universal on the basis of the conventional theory of intermit-
electronic circuitd3], chemical and biological systenid],  tency in the presence of noi§g2].
and secure communicatiofis]. Among the types of chaos __For the first example, we study coupled hyperchaotic
synchronizationphase synchronizatiofPS has become one Raossler oscillatorfCHRO) whose equations are written as
of the most active fields of research since the first report of

Rosenblumet al. [6]. X12= = Q1 5Y12~ 21 o €(Xp1— X1,
The study of Rosenblurat al. focused on the PS of non- _
identical chaotic oscillators and observed that the oscillators Y1.2=01 2X1 5+ 0.25y1 1+ Wy 5,

show a phase coherent rotation, i.e., the phase angle of the
rotation increases steadily accompanied by chaotic fluctua-
tions as time goes on. As the coupling strength is increased,
a transition from a nonsynchronous state to a phase synchro-
nous state occurs through an intermittently phase-locked

state, where the phase difference between the two ChaOt\i/(\fhere two variables andw are mutually couple@3]. Here
oscillators increase®r decreasegersistently with an inter- y P '

mittent sequence of 2 phase jumpg6—8]. They succes- 0,,=1.0+AQ/2 are the overall frequencies of chaotic os-

sively found that a relationship is established between th cillators which are slightly detuned (2 =0.001, ande is

. . . . e coupling strength. Sin variables oscillate chaoti-
chaotic amplitudes of the oscillators as the coupling strengt@aIIy aropung a fixe<gj Cem;&é the phase can be defined
increases further. As a result, the states of two interactin o~

systems coincide, if one is shifted in time. This new synchro-%round the center of the rotatiomy=0y,=0) by trans-

nous state is referred to d&gy synchronizationLS) [9,10.  forming 2U1,252y1,12/291,2 and y1,21r11to polar variables, i.e.,
With a further increase of the coupling, the lag time de-A12=(viTYi)™" and b1 ,=tan *(yi /vy o) [14,19. The
creases and the system asymptotically goesotaplete syn- phase equations of the system are expressed as follows:
chronization(CS) [11]. These findings led Rosenbluet al.

-21‘2: 30+ lezzlvz,

Wl,2: _0.521’2"_ 0.05W1’2+ 6(W2,l_ lez), (1)

to propose the route from a nonsynchronous state to the C — Q. X217 X12  Wp1—Wyp sing
state through successive transitions of PS and LS in twg? 22 €| T A, A15Q4, 12
mutually coupled chaotic oscillators.
The motivation of our study is to address the following +(2_ oSy, 0.525 5+ 0-05"’1,2) sing @)
guestion:ls the scenario of transitions to CS, via PS and LS, A, 4 A0, L2

a universal route in the case of coupled chaotic oscillators
with a parameter mismatchPhrough statistical analysis, in Then, the phase difference between the two oscillators is
this paper, we present counterexamples to Rosenbtwat's  given by ¢= 61— 0,.
We numerically study the dynamics of the phase differ-
ence¢ as the coupling strengté is varied. Figure 1 shows

*Electronic address: rim@phys.paichai.ac.kr typical dynamic behaviors of the phase differertef the
"Electronic address: yjpark@ccs.sogang.ac.kr CHRO. Fore=0.13, the system shows 27 phase jumps
*Electronic address: chmkim@mail.paichai.ac.kr with the intermittent chaotic bursts while their phases are
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4 X=X  Wi—Wp  Xp—Xg W2_Wl) Z1 23
. a) e mf A v E( AL MG A A, AL A

> ot 0.52,+0.05v, 0.52,+0.05,]
= 4 + A Q - Y siné,.
3 1°=1 2952
D> A1
| (b), £=0.18 It is well known that there are two different time scalesgin
= 0 ;ﬁ*ﬁ»vw%ﬁ_ﬁqﬁ%‘V«%vwﬁm%* dynamics, i.e., the fast onen2(}, ,, which is related with
=) the frequency of each individual oscillator in Eg), and the
" ‘ slow one 27/AQ), which is the characteristic time scale ¢f
= dynamics originating from the parameter mismatch.
= (c) €=0.25 In our previous study16,17, it was shown that if the
0 . term vy in Eq. (3) is absent, the time evolution @f stops at
¢*~0 which is the stable fixed point. If we expand the
1 ‘ ‘ ‘ equation aroundgp™, Eq. (3) becomesd¢/dt=AQ+A¢p
0 2000 4000 6000 8000 —B¢3+ y whereA= (a+ 8/2) andB=1/3(a+ B/8). As the
Time trajectory of¢ nears the tangent poing, varies very slowly

(it can be regarded as constaint comparison withé; , and

v, which are fast varying terms. Therefore the above equa-

éion can be converted into a difference equation between the
ectioning timer, which is the average time for one revolu-

tion of one of the oscillators, in the following procedure.

FIG. 1. Time series of the phase differentémeasured in units
of ) that show(a) intermittent =27 phase jumps(b) PS state
with chaotic intermittent bursts near the threshold of PS to CS, an
(c) a state near CS.

n+1)r (n+1)7

Adt—¢3f B dt

nr

locked. As we increase the coupling strengthete 0.18, B (
there are no phase jumps to be seen, although intermittent d¢=7AQ+¢ n
bursts still persist. Those bursts rarely appear when the cou-
pling strength is further increased up ée=0.25. The most (n+1)r
notable difference in transition to CS between the CHRO and * f
coupled Rasler oscillators is thato phase shift is observed

when the phase of the CHRO is synchronizBdy. 1). This  If we let d¢~¢,,1— ¢,, then the equation can be dis-
implies there is no chance for LS to occur in case of thecretized as

CHRO. On the other hand, in the case of coupleddRar

oscillators, /2 phase shift is observelé]. Other notable ni1=anbn—bad3+ &, (5)
differences of the CHRO compared with coupledsBler

oscillators are as followsi) The phase jumps occur in both where a,=1+[{"Y7Adt, b,={"Y"Bdt, and ¢,
directions[Fig. 1(a)]. (i) Near the transition threshold, large =/{." 7y dt+ 7AQ. Notice that Eq(5) is the equation of
chaotic bursts are observed, instead of the LS Jteig.  the local Poincarenap of Type-ll intermittency18] under
1(b)]. the influence of noise if the fast dynamics¢fi.e., &,, can

In order to understand these differences analytically, wébe regarded as an external noise. Equati®neffectively
need to study the phase difference dynamics more closeljpecomesp, ., ;~a,¢,+ &, near the transition since the value
From Eq.(2), the dynamic equation of the phase differenceof ¢, is very small most of the time except during the bursts
¢=60,— 0, can be written as [Fig. 1(b)]. Then, the equation takes the form of on-off in-

termittency[19] in the presence of noise. That is, E&)
predicts that thep dynamics of the system transits to CS
d—¢—AQ+ sind+ sinf+ 3) through on-off intermittency without LS. To study the tran-
dt asing+ 2" sitional behavior more closely, we obtain the phase portraits
of y,(t) versusy,(t), as shown in Figs.(2), 2(b), and Zc),
where ¢ exhibits phase jumps, intermittent bursts, and
where alomst CS, respectively.

Typically, we investigate the probability distribution of
the average time interval between two consecutive bursts in
¢(1), i.e., the average length of the laminar states since it is
well known that on-off intermittency is usually observed be-
fore CS. Figure &) shows the—3/2 slope for the shorter

T

vdt. (4)

nr

a=— 025COS01+ 02),

B= icos( 01+ 6> [zl+ 0.52,+0.09w, range of off-state and exponential drops for the longer range
Aq 2 O, laminar phases. In between is the shoulder that connects
these two curves. This is the hallmark of on-off intermittency
+ el Xy—Xo+ Wl_W?) } in the presence of noig@0-23. Therefore the nature of the
Oy intermittent bursts is indeed on-off intermittency. This, in
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- FIG. 3. (a) Phase difference of coupled Lorenz oscillators in PS
a

regimee=4.5. (b) The local Poincarenap shows a cubic curv@

is well fitted byy=0.478&+ 2.0013) and the almost vertical line in
the center due to attractor bubblin@) Attractor bubbling in the
variable z;,z,. (d) Probability distribution of average laminar
lengths shows the typical characteristic scaling exponedt2 of
on-off intermittency.

& & bR

In(P(1))

phase difference equation can be expressed similarly to that
of the CHRO[Eg. (3)]. Figure 3 shows the results that are
0 2 3 4 very similar to those of the CHRO. In particular, notice that
¥, () In{f) the phase difference is zero when two Lorenz oscillators are
nearly in the PS statdFig. 3(a)]. This means there is no LS
FIG. 2. The projection of the attractor of the CHRO in the planestate in the course of the transition to CS. These indicate that
(y1(t),y2(1)) for (8) €=0.05(nonsynchronized state(b) €=0.18  the behaviors that were observed in the CHRO can be a
(PS statgand(c) e=0.25(almost CS state Notice that large ex-  generic characteristic of chaos synchronization for a certain
cursions from the diagonal line are observed for a nonsynchronizegd|5ss of chaotic oscillators.
state. As the coupling strength increases, the pointy ofyt) coa- In the case of coupled Reler oscillatorg[17,24, the
lesces to the diagonal line statisticall¢) Phase difference of the phase difference equation, if it is expanded near the lag

CHRO in the PS regime=0.18. (e) The local Poincarenap that P _ 2
statistically follows a cubic curve and fuzzy line near center showphase shift, is of the formpn.;=ancn+bndy+et &y,

attractor bubbling(f) Probability distribution of the average lami-
nar states shows the typical characteristic scaling exporeig 03 =013
and the shoulder. '

iy
=

50 50 D 1

turn, justifies our conjecture th#étte &, term, which comes
from the fast dynamics of th#, can be regarded as external
noise So the observation of on-off intermittency supports
our point of veiw that the phase dynamics of the CHRO can

= 3 =
be treated a3ype-Il intermittency in the presence of noise e ¢,
For the second example, we study coupled Lorenz oscil- "
lators with a slight parameter mismatch in order to show the . Moa
universal character of our observation. Coupled Lorenz os- EH“ i
cillators are represented by the following equations: z -
. 10 {d}
X12= a(Y12~X1,0) T €(X2,17 X1,2), P
[ 1 2 3 4 6 ]

Y1,0= B12X12~ Y127 X1,2Z1,2, Lafl)
s FIG. 4. (a) Phase difference of Rsler oscillators in LS regime
Z12= Y 212t X12Y1,2, (6) €=0.13, with lag timer=0.32. (b) The local Poincarenap that

statistically follows a quadratic cur Attractor bubbling in the
wherea=10.0, 8, ,= 28.0+ 0,001, y=8/3, and the strength i follows a quadratic curvé) LbbIng !

P12 -1 variables x;(t),x,(t+ 7). (d) Probability distribution of average
of the coupling is given by the parameter The phase iS |gminar states shows the typical characteristic scaling exponent

well defined for (z,i) in our parameter regime. Then, the —3/2 of on-off intermittency with noise.
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where € and &, are the channel width and the noise termPoincaremap are the onlgtructurally stablemanifolds un-
from the fast dynamics of the system, respectively. Noticeder the influence of external perturbations if we regard the
that the equation can be interpreted as the local Poimoage  fast motion as external noises. This is based on the well-
of Type-I intermittency with noise. On-off intermittency also known singularity theory26].

can be expected to occur by the same argument as is given |n conclusion, we have shown an alternative route to CS
previously. So, we investigate coupled$eter oscillators at  through PS. This route, and the one proposed by Rosenblum
the onset of the LS transition. In this case, the phase differat 5/, may constitute two universal transition routes to CS
ence of the two oscillators is locked at the lag phesear hrough PS, in coupled chaotic oscillators with a parameter
w/2). This phase difference is maintained until the ampli-mismatch. The major difference of this proposed route is the
tudes are locked with a constant time delay, i.e., the LS stalgyhsence of the LS state. Instead, only large intermitttent
The results are shown in Fig. 4. If we compensate the lag ifhyrsts are observed. Analytical study based on the conven-
phase, the phase difference also shows large bursts near iga| intermittency theory explains well the statistical be-
transition threshold just like the case of the CHREQ. havior of these chaotic bursts, which demonstradeeoff

4(a)]. As expected, the distribution of the average laminalintermittency This observation supports our claim of the
states shows the characteristic behavior of on-off intermity ansition from PS to CS without LS.

tency with noisg[Fig. 4(d)]. Based on this observation, we

may classify chaotic oscillators into twaniversality classes We deeply thank Professor Y. C. Lai, Professor J. Kurth,
according to their transitional behavior to approach CS. ThiPr. W. H. Kye, and Dr. D. U. Hwang for valuable comments
claim is reasonable for the following argument. Since theand discussions. This work was supported by Creative Re-
phase difference dynamics of generic nonidentical couplegearch Initiatives of the Korean Ministry of Science and
oscillators can be divided into fast and slow motions, theTechnology. Two of ugl.K. and Y.J.P, acknowledge sup-
quadratic (type-l intermittency [16,17]) and the cubic port from the Brain Korea 21, Project No. D-1099, of the
(type-Il or Il intermittencieq 18,25)) structures in the local Korean Ministry of Education.
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